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Abstract

Rayleigh’s classical book Theory of Sound was first published in 1877. In it are many examples of
calculating fundamental natural frequencies of free vibration of continuum systems (strings, bars, beams,
membranes, plates) by assuming the mode shape, and setting the maximum values of potential and kinetic
energy in a cycle of motion equal to each other. This procedure is well known as ‘‘Rayleigh’s Method.’’ In
1908, Ritz laid out his famous method for determining frequencies and mode shapes, choosing multiple
admissible displacement functions, and minimizing a functional involving both potential and kinetic
energies. He then demonstrated it in detail in 1909 for the completely free square plate. In 1911, Rayleigh
wrote a paper congratulating Ritz on his work, but stating that he himself had used Ritz’s method in many
places in his book and in another publication. Subsequently, hundreds of research articles and many books
have appeared which use the method, some calling it the ‘‘Ritz method’’ and others the ‘‘Rayleigh–Ritz
method.’’ The present article examines the method in detail, as Ritz presented it, and as Rayleigh claimed to
have used it. It concludes that, although Rayleigh did solve a few problems which involved minimization of
a frequency, these solutions were not by the straightforward, direct method presented by Ritz and used
subsequently by others. Therefore, Rayleigh’s name should not be attached to the method.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In 1877, the first edition of Theory of Sound by Lord Rayleigh [1] was published. (See the
excellent historical introduction by Lindsay, in the 1945 reprinting, for an excellent biographical
see front matter r 2005 Elsevier Ltd. All rights reserved.
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sketch of Rayleigh and his work.) Volume I is devoted to vibration concepts, and the underlying
mathematics, and also contains six chapters dealing with vibrations of strings, bars, beams,
membranes, plates and shells. Volume II [2], published one year later, addresses problems in
acoustics.
Most of the numerous problems dealt with in Volume I begin with the governing differential

equation of motion, and are solved by classical methods, applying boundary conditions to obtain
free vibration frequencies and mode shapes. But Rayleigh was also interested in the potential (V)
and kinetic (T) energies of the system and, in some cases, attacked the problems from this
perspective. In particular, in many cases, he assumed a mode shape, and calculated the
corresponding free vibration frequency by equating V and T during a vibration cycle. This has
generally become known as the Rayleigh method of solution. Its accuracy depends upon how
closely the assumed mode shape fits the correct (exact) one.
In 1908 and 1909, Walter Ritz [3,4] published two papers that thoroughly demonstrated a

straightforward procedure for solving boundary value and eigenvalue problems numerically, to
any degree of exactitude desired, also using energy functionals. For the free vibration eigenvalue
problem, one assumes a displacement function in terms of a series of admissible displacement
functions (that is, ones satisfying at least the geometric boundary conditions of the problem)
having undetermined coefficients, and then minimizes an energy functional involving V and T to
determine frequencies and mode shapes. The first paper [3] was extensive (61 pages), and laid out
the method and its underlying concepts, discussed convergence, and applied it to some problems.
The second one [4] used the method to present novel results for the vibrations of a completely free
square plate. Tragically, Ritz died of consumption soon afterwards (cf. Ref. [5]). His complete
scientific works were collected together and published posthumously [6].
Although the Rayleigh method is used frequently, the Ritz method has found tremendous usage

during the past three decades in obtaining accurate frequencies and mode shapes for the vibrations
of continuous systems, especially for problems not amenable to exact solution of the differential
equations. This is especially because of the increasing capability of digital computers to set up and
solve the frequency determinants arising with the method. Even before that, the writer found 15
publications that used the Ritz method to solve classical rectangular plate vibration problems prior
to 1966. These are described in Chapter 4 of his plate vibration monograph [7].
In going through the 15 papers (as well as others, used elsewhere in the monograph for other

shapes of plates, or non-classical ones), the author became aware that many researchers had also
attached Rayleigh’s name to the Ritz method, calling it ‘‘the Rayleigh–Ritz method.’’ At that time
he regarded this as simply a way of amalgamating the two methods, because the Rayleigh method
may be regarded as a special case of the Ritz method when only a single admissible function is
used to describe the vibration mode. But this is misleading, because then one would not bother to
write the Ritz minimizing equation—the Rayleigh procedure is more direct.
As time went on, the writer heard comments more than once that Rayleigh had used the Ritz

method, and had written about it. But those who spoke could not cite references, saying that
‘‘they must be in Theory of Sound.’’ The writer has looked through these volumes many times
during the past 40 years, and never found anything closely resembling the Ritz method. However,
recently he was made aware of some additional published papers by Rayleigh, notably one [8] he
published two years after Ritz’s second paper, wherein he complained that Ritz had not
recognized his own, similar work.



ARTICLE IN PRESS

A.W. Leissa / Journal of Sound and Vibration 287 (2005) 961–978 963
Perhaps because Rayleigh himself claimed to deserve sharing credit for the Ritz method, many
subsequent researchers attached his name to it, without looking for verification. Therefore, the
primary purpose of this paper is to investigate carefully the historical basis for Rayleigh’s
complaint and claim, in an attempt to determine their validity. To do so requires also looking
carefully at exactly what Ritz did. A secondary purpose is to better acquaint many researchers
who currently use the Ritz’s method with its sources, especially since they are in German [3,4].
2. The method of Rayleigh

Consider first the most simple example of a one degree of freedom spring–mass system
vibrating freely, with a linear spring. The classical differential equation of motion is

m €x þ kx ¼ 0. (1)

If the initial conditions of the motion are xð0Þ ¼ A; _xð0Þ ¼ 0; then the well-known solution to
Eq. (1) is

x ¼ A cos ot, (2)

where o2 ¼ k=m is the natural frequency.
Also well known is the energy approach to the same problem. During a displacement x, the

potential energy (V) stored in the spring at any instant of time is kx2=2; while the kinetic energy of
the system (T) is in the mass (assuming a massless spring), so that T ¼ m _x2=2: With no damping,
or other externally applied forces, the system is conservative; i.e.,

T þ V ¼ constant: (3)

During a cycle of motion, described by Eq. (2), for example, the total energy interchanges between
T and V. At any instant,

V ¼ 1
2kA2 cos2ot; T ¼ 1

2mA2o2 sin2ot. (4)

The maximum potential energy (Vmax) occurs when cos2ot ¼ 1: But then the mass has no
velocity, so T ¼ 0: The maximum kinetic energy (Tmax) develops as the mass passes through the
equilibrium position with maximum velocity, so that sin2ot ¼ 1: At this instant V ¼ 0: Because
the total energy of the system remains constant, then

Vmax ¼ Tmax. (5)

Thus, substituting Vmax ¼ kA2=2 and Tmax ¼ mAo2=2 into Eq. (5), one again arrives at
o2 ¼ k=m:
The above is well known to anyone who works in the field of vibrations. It is laid out only to

clarify some concepts, and to establish the notation clearly.
Consider next the multiple degrees of freedom discrete system depicted in Fig. 1. For simplicity,

three equal masses (m) connected by four springs having equal stiffnesses (k) are shown. From
three free body diagrams and Newton’s laws one may write the governing three equations of
motion in terms of the displacements, xiði ¼ 1; 2; 3Þ: Assuming normal modes (xi ¼ Ai cos ot)
leads to the third-order determinant for the eigenvalues (nondimensional frequencies), which are
l1 ¼ 2�

ffiffiffi
2

p
; l2 ¼ 2; l3 ¼ 2þ

ffiffiffi
2

p
(li ¼ mo2

i =k). Eigenvectors and mode shapes are obtained by
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back-substitution in the usual manner, yielding A2=A1 ¼
ffiffiffi
2

p
; A3=A1 ¼ 1 for the first mode, for

example.
The same problem could be solved by an energy approach. The potential energy in the springs

at time t is

V ¼
k

2
x2
1 þ

k

2
ðx2 � x1Þ

2
þ

k

2
ðx3 � x2Þ

2
þ

k

2
x2
3. (6)

The kinetic energy of the system at a typical time is

T ¼ 1
2

m _x2
1 þ

1
2

m _x2
2 þ

1
2

m _x2
3. (7)

Using these with Lagrange’s equation of motion,

d

dt

qL

q _xi

� �
�

qL

qxi

¼ 0 ði ¼ 1; 2; 3Þ, (8)

where L � T � V ; yields the same three equations of motion that one obtains from the free body
diagrams and Newton’s laws. The solution of the eigenvalue problem to find all three natural
frequencies and mode shapes is then the same as before.
The essence of the Rayleigh method for the foregoing problem is to assume a mode shape. For

example, as an estimate of the fundamental mode shape, one could assume that A2=A1 ¼ 2 and
A3=A1 ¼ 1 for the amplitudes in Eq. (2). This assumes that this mode shape is symmetric
(A3 ¼ A1) for these identical masses and springs, and that the amplitude of the middle mass will be
significantly larger than that of the outer ones (A2=A1 ¼ A2=A3 ¼ 2). Using these amplitudes in
Eq. (2), and substituting the latter into Eqs. (6) and (7), one finds that Vmax ¼ 2kA2

1 and Tmax ¼

3mo2A1: Whence, setting Vmax ¼ Tmax results in l ¼ 2=3: Thus, the fundamental frequency
obtained from this approximate solution is o1 ¼ 0:8165

ffiffiffiffiffiffiffiffiffi
k=m

p
; which is 6.7% higher than the

value of 0:7654
ffiffiffiffiffiffiffiffiffi
k=m

p
from the previous exact solution.

The exact amplitude ratios for the fundamental mode were found to be A2=A1 ¼ A2=A3 ¼ffiffiffi
2

p
¼ 1:414; compared with the assumed value of 2 used in the Rayleigh method. If the exact

amplitude ratios had been assumed, the Rayleigh method would yield the exact corresponding
frequency.
As an example of a continuous system, consider the longitudinal (x-direction) vibrations of the

homogeneous, uniform bar of length l shown in Fig. 2. The well-known differential equation for it
is the classical one-dimensional wave equation

E
q2u
qx2

¼ r
q2u
qt2

, (9)



ARTICLE IN PRESS
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where u ¼ uðx; tÞ is the longitudinal displacement, E is Young’s modulus, and r is mass density
(per unit volume). Separating variables, solving the resulting ordinary differential equations, and
applying the fixed-free end conditions shown in Fig. 1, one arrives at

umðx; tÞ ¼ Cm sin amx cos omt, (10)

for the mth free vibration mode, if the bar is released from rest in the sin amx mode shape with
amplitude Cm: From the fixed-free end conditions one finds

am ¼
ð2m � 1Þp

2l
ðm ¼ 1; 2; . . . ;1Þ, (11)

and the nondimensional frequencies

oml

ffiffiffi
r
g

r
¼

ð2m � 1Þp
2

ðm ¼ 1; 2; . . . ;1Þ. (12)

Using the Rayleigh method instead to obtain an approximation to the fundamental frequencies,
the potential energy (which is strain energy here) is needed,

V ¼
1

2

Z l

0

AE
qu

qx

� �2

dx, (13)

as well as the kinetic energy

T ¼
1

2

Z l

0

rA
qu

qt

� �2

dx. (14)

Here A is the cross-sectional area of the rod. If AaAðxÞ; that is, for the uniform bar we are
considering, then the frequencies and mode shape are found to be independent of A.
If the displacement (u) is assumed to vary linearly along the length of the bar in its fundamental

free vibration mode shape, then

uðx; tÞ ¼ Cx cos ot, (15)

where Cl is the amplitude of the motion at the free end. Substituting Eq. (15) into Eqs. (13) and
(14) one obtains

Vmax ¼
AEl

2

� �
C2; Tmax ¼

o2rAl3

6

� �
C2, (16)
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whence ol
ffiffiffiffiffiffiffiffiffi
r=E

p
¼

ffiffiffi
3

p
¼ 1:732; which is 10.3% higher than the exact fundamental frequency of

p=2 ¼ 1:571 given in Eq. (12). Of course, the straight line mode shape assumed in Eq. (15) is
considerably different from the one-quarter sine wave (10) of the exact solution. If the exact shape
were assumed, the exact corresponding frequency would be generated by the Rayleigh method.
As can be seen in the foregoing two examples, the accuracy of the Rayleigh method depends

entirely upon how well one estimates the shape of the free vibration mode desired. It may be used
to obtain approximate frequencies for higher modes, in addition to the fundamental. And, as
the examples showed, unless one assumes the exact mode shape, one obtains a frequency that is
too high.
The method is particularly useful if one does not have reliable structural mechanics computer

programs (e.g., finite elements), or if one wants to make a quick check of the accuracy of a
program. For the first reason, the method was used a great deal 30 and more years ago. An
excellent example of this is the classical paper by Warburton [9] in which he used the Rayleigh
method to derive formulas for the frequencies of rectangular plates having all 21 possible
combinations of clamped, simply supported or free edges. He used mode shapes, which are the
products of vibrating beam eigenfunctions (satisfying the clamped, simply supported or free
boundary conditions). These single-term mode shape representations were found to be quite
accurate (o1% error in the frequencies), except when free edges are involved [10].
In a few places in his first classic book, Rayleigh [1] used the method described above, which

now bears his name. A good example is to be found in Section 89 (pp. 112–113) where he solved
the well-known problem of the vibrating string by assuming

wðx; tÞ ¼ ½1� ð2x=lÞn
 cos ot (17)

for the fundamental mode, choosing x ¼ 0 to be the middle of the string, instead of the well-
known cosðpx=2lÞ exact one, when both ends of a string of length 2l are fixed. Interestingly, he
used Eq. (17) to derive and present T and V in terms of sin o2t and cos o2t; respectively, from
which he concluded that

o2 ¼
2ðn þ 1Þð2n þ 1Þ

2n � 1

T1

rl2
, (18)

where T1 is the tension in the string and r is its mass density, but he does not mention that Vmax

must equal Tmax for result (18) to follow. This point could be assumed to be self-evident. But the
present writer could find the explicit statement of Eq. (5) anywhere in Rayleigh’s book [1].
Rayleigh did make a clear statement in Section 89 (as he does elsewhere) that the approximate

frequency given by Eq. (18) is higher then the exact value, because in assuming Eq. (17) for the
mode shape, the string is constrained to vibrate otherwise than it would naturally, and that adding
a constraint to a system increases its frequency. In detail, Rayleigh showed that choosing n ¼ 1
yields l � o2rl2=T1 ¼ 12; instead of the exact value, p2 ¼ 9:8696; using n ¼ 2 gives a better result,
l ¼ 10; and that a minimum l (the best-possible result from Eq. (18)) is 9.8990 when n ¼

ð
ffiffiffi
6

p
þ 1Þ=2 ¼ 1:72474; although he does not mention how he determined that minimum. Again,

perhaps this was too obvious.
The concept of assuming a displacement shape (i.e., function) and using this as an approximate

solution is applicable also to solve static problems, although the writer does not believe that
Rayleigh’s name should be attached to this. In Rayleigh’s published works, the idea is found only
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in connection with free vibration problems. Nevertheless, Temple and Bickley [11] in their short
monograph devoted to the concept, attach Rayleigh’s name to eigenvalue problems of static
elastic stability (determining critical loads) as well, but not to simple static deflection situations. In
a static problem, one sets the work done by the loads (that is, the negative of the load potential)
equal to the strain energy of deformation (i.e., W ¼ V ). In ordinary problems this procedure
yields the amplitude of the displacement (from which one may calculate stresses to lesser a
accuracy). In elastic stability, the work done and strain energy are due to infinitesimal
displacements away from a static equilibrium position.
3. The method of Ritz

The first paper that Ritz wrote to describe his method for solving boundary value and
eigenvalue problems was published in 1908 [3] (‘‘On a New Method for the Solution of Certain
Variational Problems of Mathematical Physics’’). The paper not only presented the method, but
demonstrated and described it for several static equilibrium and free vibration problems. In the
introduction, he explained that methods of solving boundary value problems at that time were
typically impractical, and this was his primary motivation for developing the new method.
As a prologue to the introduction, Ritz described the one-dimensional variational problem of

minimizing a functional,

J ¼

Z b

a

f ðx;w;w0;w00; . . .Þdx, (19)

by assuming functions wnðxÞ in the form of series

wnðxÞ ¼
Xn

i¼1

aiciðxÞ, (20)

where the ci may be, for example, algebraic polynomials or trigonometric functions (essential
boundary conditions are not yet mentioned), and the ai are arbitrary coefficients. The functional J
is minimized by simply taking the partial derivatives

qJ

qai

¼ 0 ði ¼ 1; 2; . . . ; nÞ. (21)

As he said, for typical (in his day) linear problems, J is a quadratic form, and the resulting
equations (21) are linear in the ai: For static equilibrium (boundary value) problems, the
equations are nonhomogeneous, and one solves directly for the ai: For free vibration (eigenvalue)
problems, x does not appear explicitly as an independent variable in Eq. (19), Eqs. (21) are
homogeneous, and an eigenvalue determinant arises from the equations.
It should be remarked here that the integrand of Eq. (19) is standard for one-dimensional

structural mechanics problems. For example, f ðx;w;w0Þ would accommodate the longitudinal
elastic stretching of a bar (uniform or nonuniform), or its twisting (not considering warping
constraint), or the transverse displacement of a stretched string. Similarly, f ðx;w;w0;w00Þ could
deal with the transverse displacements of a classic (Euler–Bernoulli) beam.
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The main part (pp. 6–44) of Ritz’s paper [3] deals with the application of his method to the
classic Kirchhoff plate problem (‘‘Deformation of an Elastic Plate Clamped on its Boundary,
under the Influence of a Given Normal Pressure’’). Although its title appears to limit the analysis
to the static equilibrium problem, the free vibration case is also discussed at the end of this part.
The governing biharmonic differential equation for the problem was exhibited:

r4w ¼
q4w
qx4

þ 2
q4w

qx2qy2
þ

q4w
qy4

¼ f ðx; yÞ, (22)

along with the clamped boundary conditions

w ¼
qw

qn
¼ 0, (23)

and the corresponding energy functional

J ¼
1

2

Z
A

Z
½ðr2wÞ2 � f ðx; yÞw
dA: (24)

In these forms, Ritz was obviously now setting the plate flexural rigidity, D � Eh3=12ð1� n2Þ;
equal to unity to avoid dragging along this constant through the calculations. He also pointed out
correctly that the energy functional (strain energy plus transverse load potential) is simplified to
the form of Eq. (24) if w satisfies Eqs. (23). Thus, the first problem that Ritz actually exhibited and
analyzed in detail was more complicated than the one-dimensional one described in his
Introduction.
He then continued by discussing various mathematical aspects involved when applying the new

method to the clamped square plate problem; for example: (1) a proof (p. 8) that exact
minimization of the energy functional (24) yields the differential equation (22); (2) an approximate
minimization of J yields an upper bound for it (p. 15); (3) a proof that the limiting solution of
wnðx; yÞ converges uniformly to the exact solution of the differential equation if proper two-
dimensional functions cðx; yÞ are used in the approximate solution (20), and n is increased as
needed.
Considerable space (pp. 25–40) was next devoted to how one may choose admissible functions

cijðx; yÞ so as to satisfy the clamped boundary conditions in using the approximate solution

wmnðx; yÞ ¼
Xm

i¼1

Xn

j¼1

aijcijðx; yÞ; (25)

in Ritz’s method. First, the general case of a polygonal plate having clamped edges was discussed,
but then he returned to the clamped square plate, suggesting the following types of cij: (1) Fourier
sine series: sinðipx=aÞ sinðjpy=aÞ; (2) ordinary polynomials: xiyj; (3) Legendre (orthogonal)
polynomials: PiðxÞPjðyÞ; provided that each term is multiplied by the equation of the boundary
squared (F), so that each satisfies the boundary conditions; that is, multiplied by

F ¼ ðx � aÞ2ðx � a0Þ
2
ðy � bÞ2ðy � b0Þ

2, (26)

where a, a0, b, b0 are the boundary locations in the xy-coordinate system. Using the ordinary
polynomials of Eq. (25), premultiplied by F, is the form used by many analysts today, although in



ARTICLE IN PRESS

A.W. Leissa / Journal of Sound and Vibration 287 (2005) 961–978 969
more generality, the exponents in Eq. (26) are taken to be zero, one or two, depending upon
whether the particular boundary is free, simply supported, or clamped, respectively.
Ritz then introduced (p. 33) the concept of taking the cij in Eq. (25) to be the product of beam

vibration eigenfunctions; i.e.,

cijðx; yÞ ¼ X iðxÞY jðyÞ, (27a)

where X i satisfies the beam boundary conditions at the end of the x interval, and similarly for Y j:
For his C–C–C–C plate, of course, Ritz used the clamped–clamped beam eigenfunctions in both
directions, exhibiting them in detail, and discussing their orthogonality and the advantages of this
in carrying out calculations.
The problem of the C–C–C–C square plate subjected to uniform pressure was solved in detail,

beginning on p. 41. Two approximate numerical solutions were presented, one employing the first
three, independent, doubly symmetric products of X iY j in Eq. (25)—that is, retaining only a11,
a31ð¼ a13Þ; a33 because of the plate and loading symmetry, and another solution using the first six
(a11; a31 ¼ a13; a33; a51 ¼ a15; a53 ¼ a35; a55). These showed the rapidity of convergence, with the
additional three terms turning out to be very small.
On p. 44, Ritz discussed briefly the application of his method to plate free vibration problems,

for which Eq. (22) is replaced by

r4w ¼ lw, (27b)

and, similarly, f ðx; yÞ is replaced by lw in the energy functional (24) to be minimized. This is an
eigenvalue problem. His method would generate a characteristic determinant, the roots of which
are the desired eigenvalues (nondimensional frequencies), l:
Having dealt extensively with the clamped square plate, Ritz then turned (p. 45) to the less-

complicated Dirichlet problem governed by the differential equation

r2u ¼
q2u
qx2

þ
q2u
qy2

¼ 0, (28)

with either u or qu=qn specified on the boundary. If u takes on values Qðx; yÞ along the boundary,
Ritz shows that by defining a new function w ¼ u � Q; Eq. (10) is replaced by

r2w ¼ f ðx; yÞ, (29)

where w is now zero on the boundary. The corresponding functional to be minimized is

J ¼
1

2

Z
A

Z
qw

qx

� �2

þ
qw

qy

� �2

� 2wf ðx; yÞ

" #
dxdy. (30)

This corresponds to twice the potential energy in a taut membrane subjected to transverse static
pressure, f ðx; yÞ: Most of the rest of this section of his paper is devoted to a mathematical
discussion of his minimization method when applied to the Dirichlet problem, including
convergence. But no specific problems are solved.
A short section (pp. 52–57) titled ‘‘Linear Differential Equations with Variable Coefficients’’ is

presented, which is applicable to certain one-dimensional problems, such as the longitudinal
deformation of a nonhomogeneous and/or variable cross-section rod. No specific problems are
solved.
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The last section (pp. 57–61) goes into the details of solving the vibrating string problem. Taking
the coordinate origin at the middle of the string, the boundaries (x ¼ 1) are fixed by choosing
the transverse displacement (y) as

yn ¼ ð1� x2Þða0 þ a2x
2 þ a4x

4 þ � � � þ a2nx2nÞ, (31)

which considers only the symmetric vibration modes, which are uncoupled from the antisymmetric
modes. The energy functional to be minimized is

Jn ¼

Z 1

�1

½ðy0nÞ
2
� k2

ny2
n
dx, (32)

where the first term in the integrand is from the potential energy, and the second from the kinetic
energy. Setting up the minimizing equations qJn=qai ¼ 0 yields the characteristic determinant for the
eigenvalues (nondimensional frequencies). The exact solution for the fundamental frequency is 2k2

1 ¼

p2=2 ¼ 4:934802200 (Ritz said, which is correct to nine significant figures, and is one indication of the
accuracy to which he worked a century ago). Retaining only a0 and a2 in Eq. (31), Ritz obtained
2k2

1 ¼ 4:93488; a reasonably accurate upper bound. Adding a third term (a4), and expanding the
third-order determinant, he arrived at the very accurate approximation 2k2

1 ¼ 4:934802217 for the
fundamental frequency. He also showed that the second approximate eigenvalues were less accurate
upper bounds for the second symmetric mode frequency (third mode, overall). Finally, he concluded
this numerical study by comparing the approximate and exact fundamental mode shapes, as well as
the location of the node points for the second symmetric mode.
We translate from the German the last page of Ritz’s first article [3], which contained certain

noteworthy statements: ‘‘One may conclude from this example that our method for the
calculation of the fundamental frequency of a string, membrane or plate is particularly
advantageous, and that the higher frequencies are with which one is involved, the greater the
number of constants ai one needs to calculate to achieve a given exactitude.’’
Continuing (p. 61): ‘‘The method is also useful for the investigation of Chladni vibration mode

shapes. For the transversely vibrating plate, in the case of a free boundary, this problem has thus
far been solved only for the circle. But for the rectangular plate clamped along its boundary the
solution is yet unknown. It is easy to show that the corner points are singular, and in their
neighborhoods a development in power series is not possible. Here our method, for example, with
application of polynomials, also has a great advantage in being applicable, as long as the essential
boundary conditions are not violated. For this application of the new method to the transverse
vibrations of a flat rectangular plate I shall return to in another place.’’
Ritz did indeed return to this problem, and quickly. One year later, he published his second

paper [4] (‘‘Theory of Transverse Vibrations of a Square Plate with Free Edges’’) using the new
method. Using the products of vibrating beam eigenfunctions as admissible approximation
solutions in Eq. (25), the numerical solutions are somewhat more complicated than those for the
completely clamped plate, which he had discussed in his first paper. This is because the strain
energy of bending has a term

�2ð1� nÞ
q2w
qx2

q2w
qy2

�
q2w
qxqy

� �2
" #

, (33)
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(where n is Poisson’s ratio) that must be added to the energy functional integrand of Eq. (24), and
does not vanish upon integration if part of the boundary is free. He may have chosen this problem
because it was one that Chladni had investigated experimentally a century earlier [12–15], and
others (including Rayleigh) had examined theoretically [16,17], but for which no satisfactory
solution existed. We also know that no exact solution for it had been found. Nor has any been
found yet, one century later.
In this second paper, Ritz presented frequencies and nodal patterns (also called ‘‘Chladni

figures’’ then) for numerous mode shapes of the F–F–F–F square plate, using n ¼ 0:255: As many
as six terms were retained in Eq. (25) in order to obtain the lower frequencies reasonably
accurately.
4. Rayleigh’s complaint

In 1911, two years after the publication of Ritz’s second paper [4], which demonstrated his
solution method in detail for the free vibration problem of the completely square plate, Rayleigh
published a paper [8], which first complimented Ritz on his work, but then took him to task for
not acknowledging some earlier work which Rayleigh felt was very similar.
In the first paragraph, Rayleigh [8] mentioned that he had discussed the completely free square

plate in Chapter 10 of his book [1] (see pp. 372–383), saying that the problem was ‘‘one of great
difficulty, which for the most part resisted attack.’’ He then went on to say that an exception is the
case when Poisson’s ratio (n) for the material is zero. Of course, then the two-dimensional
anticlastic effects vanish, and the plate behaves as a beam. In his book, Rayleigh devotes most of
the space (pp. 373–379) to showing how combinations of the 1-D beam modes could be
superimposed to obtain nodal patterns similar to those found by Chladni. By this approach then,
for a square plate, for example, the 1,3 and 3,1 modes, each having two parallel nodal lines, could
be superimposed to generate nodal patterns that have either two diagonal nodal lines, or an inner,
nearly circular one; these are similar to the 1,3 and 3,1 degenerate modes of a square membrane,
except that the boundaries are free, not fixed. But, of course, for the actual plate, if na0; the nodal
lines of the 1,3 and 3,1 modes are not quite straight or parallel.
Further in this part of his book, Rayleigh went on to consider the fundamental mode of the free

square plate, which is known to have two straight nodal lines passing through the middle points of
opposite sides; i.e., the first doubly antisymmetric mode. He approximated the solution by
assuming

wðx; y; tÞ ¼ xy cos ot, (34)

in terms of centrally located axes, pointing out that the xy shape is the exact solution for the plate
loaded by equal and opposite static concentrated forces in the four corners, and that this free
vibration approximation should be accurate if the square plates have large, concentrated masses
(M) in the four corners. He then used his method (Vmax ¼ Tmax) to calculate the corresponding
natural frequency of the system. For M ¼ 0 (no corner masses), he gave the result

o2 ¼
24Eh2

rð1þ nÞa4
, (35)



ARTICLE IN PRESS

A.W. Leissa / Journal of Sound and Vibration 287 (2005) 961–978972
saying that ‘‘the error is probably not great.’’ One finds out (cf. Ref. [10], Table C15) that the error
in this frequency (o) is 5.3% if n ¼ 0:3:
Returning to Rayleigh’s 1911 paper [8], in the second paragraph he said, ‘‘I wish to call

attention to a remarkable memoir by W. Ritz in which, somewhat on the above lines, is developed
with great skill what may be regarded as a practically complete solution of the problem of
Chladni’s figures on square plates.’’ This is certainly a nice compliment to Ritz. But it would have
been more proper, and more correct, if ‘‘somewhat on the above lines’’ had been omitted, for
there is considerable difference between Ritz’s second paper [4] and what Rayleigh showed for
plate problems in his book [1]. The only plate problem that Rayleigh actually solved was the one
described above for the square plate with corner masses. And this was done simply by setting
Vmax ¼ Tmax (or the equivalent), without the use of multiple admissible functions and frequency
minimization, which is the essence of Ritz’s method.
Rayleigh [8] subsequently went on to say, referring to Ritz’s paper: ‘‘As it has been said, the

general method of approximation is very skillfully applied, but I am surprised that Ritz should
have regarded the method itself as new. An integral involving an unknown arbitrary function is to
be made a minimum. The unknown function can be represented by a series of known functions
with arbitrary coefficients—accurately if the series be continued to infinity, and approximately by
a few terms. When the number of coefficients, also called generalized coordinates, is finite, they
are of course to be determined by ordinary methods so as to make the integral a minimum. It was
in this way that I found the correction for the open end of an organ-pipe using a series with two
terms to express the velocity at the mouth. The calculation was further elaborated in Theory of

Sound, Vol. 2, Appendix A. I had supposed that this treatise abounded in applications of the
method in question (see Sections 88–91, 182, 209, 210, 265); but perhaps the most explicit
formulation of it is in a more recent paper [18], where it takes almost exactly the shape employed
by Ritz. From the title it will be seen that I hardly expected the method to be so successful as Ritz
made it in the case of higher modes of vibration.’’
Because Rayleigh put forth that his hydrodynamics paper [18], was ‘‘perhaps the most explicit

formulation’’ of the method, and that ‘‘it takes almost exactly the shape employed by Ritz,’’ it
behooves us to look at this work first, among those listed by him. He began by writing down the
kinetic and potential energies of a linear, two degree-of-freedom system in its most general form

T ¼ 1
2
L _q21 þ M _q1 _q2 þ

1
2
N _q2

2, (36a)

V ¼ 1
2
Aq2

1 þ Bq1q2 þ
1
2
Cq22, (36b)

where q1 and q2 are the generalized coordinates, and M and B are inertial and restoring coupling
coefficients, respectively. From this, he said, one obtains (presumably by using Lagrange’s
Equations, although he did not say) the determinantal equation

A � o2L B � o2M

B � o2M C � o2N












 ¼ 0, (37)

which yields two frequencies o1; o2: This then could be a two degree-of-freedom approximation
to a linear system, with better approximations possible by using three or more qi’s to yield higher
order determinants.
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Rayleigh then went on to say [18] that representing a system by less degrees of freedom than it
actually has introduces constraints in it, and that the resulting frequencies would all be too high
(i.e., upper bounds). In particular, approximation of the fundamental frequency can be improved
by adding freedom (i.e., generalized coordinates).
He illustrated this method in Ref. [18] on a problem of liquid sloshing in a rigid, circular

cylindrical container, which had been previously discussed by Lamb. The problem is described in
Fig. 3. The container is lying on its side, and is half full with a liquid. The liquid has an infinite
number of circumferential free vibration modes (i.e., displacements only in the y-direction); the
fundamental one is depicted. The second mode would have two node points on the free surface, in
addition to the center (r ¼ 0). The displacement of the liquid-free surface completely determines
the motion in this mode. Rayleigh expressed it by

Z ¼ �q2ðr=cÞ þ 4q4ðr=cÞ3 � 6q6ðr=cÞ5 þ � � � , (38)

(see Fig. 3). The potential energy in the displaced position is then

V ¼ 2

Z c

0

gZ2

2
dr ¼ 4gc

1

3
q22 �

4

5
q2q4 þ

4

7
q2
4 þ � � �

� �
(39)
Fig. 3. Liquid sloshing in a half–full cylindrical container: (a) equilibrium, (b) first circumferential sloshing mode.
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(assuming unit density, and letting g be the gravitational constant). He then assumed a stream
function, as used in classical hydrodynamics (inviscid, incompressible flow), related it to _Z; and
expressed the kinetic energy (T) in terms of the _qi: As a first approximation, he retained only the
first term of Eq. (38). As an improved approximation, he kept the first two terms. This generated
T and V in the form of Eqs. (36), from which the frequency determinant (37) could immediately be
written and solved for o1 and o2: The fundamental frequency (o1) thus obtained was found to be
only 0.4% lower (a closer upper bound to the exact value) than the first approximation. He
mentions the possibility of continuing in a similar manner, using the third term in Eq. (38), but
does not do it.
How similar is Rayleigh’s method, as used for the hydrodynamic sloshing problem, to that

laid out by Ritz? In both approaches a set of admissible functions are chosen, as in Eq. (38),
and V and T are expressed in terms of the generalized coordinates (qi). But the subsequent
logic is different. As described above, Rayleigh assumes that an infinite degree of freedom
system can simply be replaced by a finite dof system, to yield approximate o: There is no clear
mathematical minimization procedure present. But if one looks more closely at Rayleigh’s
procedure, one realizes that Lagrange’s equations, when applied to the energy functionals (36),
are minimizing equations. For the two d.o.f. system of Eqs. (36) they yield the exact ordinary
differential equations in terms of q1 and q2 corresponding to this minimum. But Rayleigh
did not mention that a mathematical minimizing process is occurring. Rather, he explained in
detail how the presence of constraints in the generalized coordinates yields frequencies
which are too high, and giving additional freedom to the system improves their accuracy. Ritz,
on the other hand, said that the frequencies are too high (or, at least, never less than the exact
values) if only a finite number of admissible functions is used in the energy functionals, because
the mathematical minimizing procedure would yield a lower minimum if additional terms are
taken.
Let us now take up ‘‘the correction for the open end of an organ-pipe’’ mentioned by Rayleigh

in his 1911 paper [8], which is supposed to be another example of the Ritz method. This appears as
the very last section of his Volume 2 [2]. Because the longitudinal velocity (v) of the air is not
constant, a correction is made by assuming that it varies with the radius (r) within the tube as

v ¼ 1þ a2r
2 þ a4r

4, (40)

where a2 and a4 are undetermined coefficients. As explained by Rayleigh, the problem is to
minimize the total kinetic energy of the air, including both that within the tube and that outside of
the opening, by a lengthy, two-part analysis. This results in a complicated expression for the total
kinetic energy, which involves terms with a2, a4, a2

2; a24 and a2a4: Rayleigh determines the
minimum by intricate algebraic manipulations, instead of taking partial derivatives with respect to
a2 and a4, which would be the Ritz approach.
Looking at Sections 88 and 89 in Ref. [1], which Rayleigh [8] also described as being equivalent

to Ritz’s [4] method, one finds a suggested iterative procedure (p. 110) for improving the estimated
frequency when using the Rayleigh method, and a lengthy discussion of how mass or constraint
added to a system affects its frequencies. In Section 89, one finds the Rayleigh approximate
solution (17) for the vibrating string described here earlier. As mentioned earlier, a minimum
upper bound frequency for the problem was obtained by varying the exponent n, but only a single
admissible function (17) was used.
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In Section 90, Rayleigh presented a theoretical study of what happens to a mechanical system if
it is changed slightly, so that T ! T þ dT and V ! V þ dV ; again showing how frequencies are
generally increased or decreased. In Section 91, he applied the equations of Section 90 to a string
having variable density. He assumed

wðx; tÞ ¼
X

m

fmðtÞ sin
mpx

l
, (41)

for the mode shapes. The method is applied to the string having a small mass added to its
midpoint. Approximate frequencies are calculated, but there is no minimization process.
In Section 182, a cantilever beam is deflected by a static force at its free end, giving the deflected

shape w ¼ �3lx2 þ x3 (x ¼ l is the free end). Using this shape, V and T for the free vibration
are calculated, yielding a fundamental frequency (o) that is 1.4% higher than the exact
value. The static force is next applied at an arbitrary distance x ¼ c from the free end.
Determining a new w, and calculating V and T, the frequency is determined in terms of c.
Rayleigh said that taking c ¼ 3l=4 results in a frequency only 1.2% too high. But he did not
minimize o:
The problem of the free vibrations of an almost circular membrane was analyzed by Rayleigh in

Sections 209 and 210. The boundary radius was taken as r ¼ a þ dr; where a is a constant and dr is
a perturbation. The solution to the differential equation in terms of Bessel functions is similarly
perturbed to obtain frequencies. In particular, the elliptical membrane having small eccentricity is
analyzed. But energy is not mentioned in these sections, so they do not involve the Rayleigh or
Ritz methods.
The last example cited by Rayleigh in his 1911 paper [8] as being equivalent to Ritz’s method

was Section 265 of his classic second volume [2]. This involves the acoustic resonance of air in a
closed tube of variable cross-section. He assumes the same sin px=l air displacement along the
length (l) of the tube as for the uniform cross-section, calculates the potential (V) and kinetic (T)
energies. Setting Vmax ¼ Tmax; he obtains an approximate value (an upper bound) for the
fundamental resonant frequency. But this is exactly the method which bears his name, described
in Section 2 of this paper. There are no multiple trial functions involved, nor minimization of the
frequency, which are present in Ritz’s method.
To complete the summary of Rayleigh’s 1911 paper [8], where he complained about lack of

recognition by Ritz [4], he devoted the second half of it to working out an improved solution to
the problem of vibration of a completely free square plate, using ordinary algebraic polynomials
as admissible functions. He considered improving upon the fundamental frequency that he had
found in Theory of Sound [1], taking a single generalized coordinate and setting Vmax ¼ Tmax; by
generalizing Eq. (34) to

wðx; y; tÞ ¼ xy½q1 þ q2ðx
2 þ y2Þ þ q3ðx

4 þ y4Þ þ q4x
2y2 þ � � �
 cos ot. (42)

In the same manner with which he had dealt with the liquid sloshing problem [18], he retained the
first two terms of Eq. (42), substituted them into the T and V integrals to generate Eqs. (36), and
then used Eq. (37) to determine the first two o: The resulting fundamental frequency was 4.0%
less than that of the one-term solution, given as Eq. (34). But, as he admitted ‘‘the value thus
obtained is not so low, and therefore not so good, as that derived by Ritz.’’
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5. Further discussion

To describe the Ritz method briefly, one could say that it solves a boundary value or eigenvalue
problem by assuming a solution in the form of a series of admissible functions (satisfying at least
the geometric boundary conditions), each having an arbitrary coefficient, and minimizes the
appropriate energy functional directly. Thus, as Ritz and others have described it, it is a direct
method of solving a variational problem; that is, not employing the classical Euler–Lagrange
differential equation to first generate equations of motion, which must then be solved.
In the example where Rayleigh used two admissible functions, the liquid sloshing problem [18],

he argued on physical grounds that adding terms to the set of admissible functions decreases the
unnecessary constraint within the system, and therefore improves the solution. In the organ-pipe
problem Rayleigh [2, volume 2, Appendix A] did use two admissible functions, along with an
energy approach. But the functional was ultimately minimized by intricate algebraic manipula-
tions, instead of taking partial derivatives as in the Ritz method. For the vibrating string problem
([1, Section 89]), only a single term admissible function (17) was used to obtain the approximate
frequency (18) in terms of the exponent (n). The present writer has looked further through
Rayleigh’s published works, and finds no other example of frequency minimization.
The Ritz method may also be arrived at on physical grounds for a free vibration problem,

instead of as a variational problem, in the following manner. Let Tmax ¼ o2T�
max; that is, T�

max is
simply the integral for the maximum kinetic energy of the system during a cycle of motion, with
the constant o2 factored out. Thus, from Eq. (5)

o2 ¼
Vmax

T�
max

. (43)

The R.H.S of Eq. (43) is called ‘‘Rayleigh’s Quotient’’ by many. Using Rayleigh’s method, one
could substitute the assumed mode shape into the numerator and denominator integrals of Eq.
(43) to obtain an approximate o2: If the mode shape (i.e., eigenfunction) is given additional
freedom, by representing it with a series of admissible functions as in, for example, Eq. (25), then
the best-possible (i.e., the lowest) frequency may be found directly from the minimizing equations

qo2

qaij

¼
q
qaij

Vmax

T�
max

� �
¼ 0 ði ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; nÞ. (44)

Differentiating the quotient above yields

q
qaij

ðVmax � TmaxÞ ¼ 0 ði ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; nÞ, (45)

where Vmax � Tmax is the standard combination of integrals to be minimized, as Ritz [3] presented
it. A similar physical argument may be used to establish buckling loads resulting from the Ritz
method. In his lengthy first paper, Ritz [3] did present (p. 58) Eq. (43) as a quotient of integrals to
be minimized in a single place, where he discussed applying his method to the vibrating string
problem.
Interestingly, in describing one method of writing the minimizing equations (21) for the energy

functional (19), Ritz [3] arrived at (his Eq. (41) on p. 38) what we now would call a Galerkin

integral, although Galerkin’s expository paper on the subject [19] did not appear until 1915. The
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transformation of the Ritz minimizing equations to the Galerkin form, in general, is described in
detail in the monograph by Kantorovich and Krylov [20] (cf. pp. 263–265 and 272–275). Actually,
many Russian analysts call the Galerkin method the ‘‘Bubnov–Galerkin’’ method, to recognize
the earlier publication (1913) of Bubnov [21] who showed a different method of arriving at the
same algebraic equations as Timoshenko did in applying the Ritz method to some elastic stability
problems. This different method is equivalent to what Galerkin presented two years later in a
more general form. The background of this is discussed well in the monograph by Mikhlin [22]
(see pp. 28–31 of his introductory, historical review chapter). But, it is interesting that Ritz
showed this approach a few years earlier than either Bubnov or Galerkin. This fact was also
recognized by Timoshenko [23, (see his footnote on p. 347)].
Ritz devoted a great deal of his first paper [3] to questions of convergence of series solutions.

The last sentence he wrote was therefore particularly important to him: ‘‘After the above
examples, in application of the new calculation methods also to cases where the convergence proof
is yet lacking, the physicist need not feel alarmed by this defect.’’
6. Concluding remarks

After a lengthy and careful study of all possible relevant works of Rayleigh and Ritz, the
present writer concludes that the method of Ritz, as presented by him, is significantly different
from what Rayleigh showed. The Rayleigh method, as described above in Section 2, is still a very
useful approach for many eigenvalue problems (e.g., free vibration or buckling), but in the words
of Mikhlin [22, p. xxi], ‘‘the Ritz method is a far-reaching generalization of the so-called ‘Rayleigh
Method’.’’ That is, while a first approximation to a vibration frequency may be obtained by the
Rayleigh method, using a single admissible function for the mode shape in Eq. (43), much better
results are typically obtained by using the Ritz method with a series of admissible functions,
writing the minimizing Eqs. (45).
As it has been shown, Rayleigh did solve a few problems in ways similar to that used

subsequently by Ritz, but not the same. That is, as discussed earlier in Sections 4 and 5, Rayleigh
solved three problems which involved minimization of a functional, but not by the
straightforward, direct Ritz’s method followed by scores of subsequent analysts. Therefore, the
present writer concludes that Rayleigh’s name should not be attached to the Ritz method; that is,
the ‘‘Rayleigh–Ritz method’’ is an improper designation.
It is also the opinion of the writer that Lord Rayleigh made the greatest contributions to the

study of mechanical vibrations of any person of his time. His Theory of Sound [1], as well as other
published papers, increased the understanding of vibrational phenomena tremendously more than
a century ago. Even now, when read carefully, they still provide excellent insight into the subject.
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